New reactivities through gold and chiral Bronsted acid catalysis

Dr. Nitin T. Patil

Department of Chemistry, COS Lab - Catalysis and Organic Synthesis Laboratory, IISERB Indian Institute of Science Education and Research Bhopal, Bhopal-462 066, India e-mail: npatil@iiserb.ac.in

Research in our laboratory is focused on the development of new reactions employing gold and chiral Brønsted acid catalysis. We are also interested in the development of "Merged Organo/Gold Catalysis" - a technique supposed to be very important for $\mathrm{Au}^{(\mathrm{II})}$ catalysis given the difficulties of transferring chiral information from a ligand disposed 180° from the substrate. Our endeavours in these directions have led to (i) Gold ${ }^{(\mathrm{I})}$-catalyzed hydroaminaloxylation and Petasis-Ferrier rearrangement cascade, ${ }^{[1]}$ (ii) Oxidative intramolecular 1,2-amino-oxygenation of alkynes, ${ }^{[2]}$ (iii) Catalytic enantioselective azaPiancatelli rearrangement, ${ }^{[3]}$ (iv) Catalytic enantioselective 1,3-alkyl shift in alkyl aryl ethers, ${ }^{[4]}$ (v) Enantioselective hydroamination-hydroarylation of alkynes, ${ }^{[5]}$ and (vi) Addition/cycloisomerization/ transfer hydrogenation cascade to access tetrahydroquinolines. ${ }^{[6]}$ This talk will highlight our efforts to address the gaps in the literature and successful realization of the aforementioned reactions.

References

1. A. B. Gade, N. T. Patil, Org. Lett. 2016, 18, 1844.
2. A. C. Shaikh, D. Ranade, P. R. Rajamohanan, P. P. Kulkarni, N. T. Patil, Angew. Chem. Int. Ed. 2017, 56, 757.
3. A. B. Gade, N. T. Patil, Synlett 2017, 28, 1096.
4. A. B. Gade, P. N. Bagle, P. S. Shinde, V. Bhardwaj, S. Banerjee, A. Chande, N. T. Patil, Angew. Chem. Int. Ed. 2018, 57, 5735.
5. V. S. Shinde, ; M. V. Mane, K. Vanka, A. Mallick, N. T. Patil, Chem. Eur. J. 2015, 21, 975.
6. N. T. Patil, V. S. Raut, R. B. Tella, Chem. Commun. 2013, $49,570$.
